Taylor Frederick Winslow

Photo Taylor Frederick Winslow
Frederick Winslow Taylor (March 20, 1856–March 21, 1915), widely known as F. W. Taylor, was an American mechanical engineer who sought to improve industrial efficiency. He is regarded as the father of scientific management, and was one of the first management consultants.[1] Taylor was one of the intellectual leaders of the Efficiency Movement and his ideas, broadly conceived, were highly influential in the Progressive Era. Taylor was born in 1856 to a wealthy Quaker family in Germantown, Philadelphia, Pennsylvania. Taylor's ancestor, Samuel Taylor, settled in Burlington, New Jersey, in 1677. Taylor's father, Franklin Taylor, a Princeton-educated lawyer, built his wealth on mortgages.[2] Taylor's mother, Emily Annette Taylor (née Winslow), was an ardent abolitionist and a coworker with Lucretia Mott. Educated early by his mother, Taylor studied for two years in France and Germany and traveled Europe for 18 months.[3] In 1872, he entered Phillips Exeter Academy in Exeter, New Hampshire. Upon graduation, Taylor was accepted at Harvard Law. However, due to rapidly deteriorating eyesight, Taylor had to consider an alternative career. After the depression of 1873, Taylor became an industrial apprentice patternmaker, gaining shop-floor experience at a pump-manufacturing company Enterprise Hydraulic Works, Philadelphia. Taylor's career progressed in 1878 when he became a machine shop laborer at Midvale Steel Works. Taylor was promoted to gang-boss, foreman, research director, and finally, chief engineer at Midvale. Taylor took night study at Stevens Institute of Technology and in 1883 obtained a degree in Mechanical Engineering through a highly unusual, for the time, series of correspondence courses.[4] While at Stevens Institute of Technology, Taylor was a Brother of the Gamma Chapter of Theta Xi. On May 3, 1884, he married Louise M. Spooner of Philadelphia. From 1890 until 1893 Taylor worked as a general manager and a consulting engineer to management for Manufacturing Investment Company, Philadelphia, a company that operated large paper mills in Maine and Wisconsin. In 1893, Taylor opened an independent consulting practice in Philadelphia. His business card read "Systematizing Shop Management and Manufacturing Costs a Specialty". In 1898, Taylor joined Bethlehem Steel, where he, Maunsel White, and a team of assistants developed high speed steel. For his process of treating high speed tool steels he received a personal gold medal at the Paris exposition in 1900, and was awarded the Elliott Cresson Medal that same year by the Franklin Institute, Philadelphia. Taylor was forced to leave Bethlehem Steel in 1901 after antagonisms with other managers. In 1901, Frederick and Louise Taylor adopted three orphans Kempton, Robert and Elizabeth. On October 19, 1906, Taylor was awarded an honorary degree of Doctor of Science by the University of Pennsylvania.[5] Taylor eventually became a professor at the Tuck School of Business at Dartmouth College.[6] Late winter of 1915 Taylor caught pneumonia and one day after his fifty-ninth birthday, on March 21, he died. He was buried in West Laurel Hill Cemetery, in Bala Cynwyd, Pennsylvania. Taylor was a mechanical engineer who sought to improve industrial efficiency. Taylor is regarded as the father of scientific management, and was one of the first management consultants and director of a famous firm. In Peter Drucker's description, Taylor was also an accomplished tennis player, who won the first doubles tournament in the 1881 U.S. National Championships, the precursor of the U.S. Open, with Clarence Clark.[8] Taylor believed that the industrial management of his day was amateurish, that management could be formulated as an academic discipline, and that the best results would come from the partnership between a trained and qualified management and a cooperative and innovative workforce. Each side needed the other, and there was no need for trade unions. Future U.S. Supreme Court justice Louis Brandeis coined the term scientific management in the course of his argument for the Eastern Rate Case before the Interstate Commerce Commission in 1910. Brandeis debated that railroads, when governed according to the principles of Taylor, did not need to raise rates to increase wages. Taylor used Brandeis's term in the title of his monograph The Principles of Scientific Management, published in 1911. The Eastern Rate Case propelled Taylor's ideas to the forefront of the management agenda. Taylor wrote to Brandeis "I have rarely seen a new movement started with such great momentum as you have given this one." Taylor's approach is also often referred to, as Taylor's Principles, or frequently disparagingly, as Taylorism. Taylor's scientific management consisted of four principles: Taylor had very precise ideas about how to introduce his system: Workers were supposed to be incapable of understanding what they were doing. According to Taylor this was true even for rather simple tasks. The introduction of his system was often resented by workers and provoked numerous strikes. The strike at Watertown Arsenal led to the congressional investigation in 1912. Taylor believed the labourer was worthy of his hire, and pay was linked to productivity. His workers were able to earn substantially more than those in similar industries and this earned him enemies among the owners of factories where scientific management was not in use. Taylor promised to reconcile labor and capital. Taylor thought that by analyzing work, the "One Best Way" to do it would be found. He is most remembered for developing the time and motion study. He would break a job into its component parts and measure each to the hundredth of a minute. One of his most famous studies involved shovels. He noticed that workers used the same shovel for all materials. He determined that the most effective load was 21½ lb, and found or designed shovels that for each material would scoop up that amount. He was generally unsuccessful in getting his concepts applied and was dismissed from Bethlehem Steel. It was largely through the efforts of his disciples (most notably H.L. Gantt) that industry came to implement his ideas. Nevertheless, the book he wrote after parting company with Bethlehem Steel, Shop Management, sold well. Taylor was president of the American Society of Mechanical Engineers (ASME) from 1906 to 1907. While president, he tried to implement his system into the management of the ASME but was met with much resistance. He was only able to reorganize the publications department and then only partially. He also forced out the ASME's long-time secretary, Morris L. Cooke, and replaced him with Calvin W. Rice. His tenure as president was trouble-ridden and marked the beginning of a period of internal dissension within the ASME during the Progressive Age.[12] In 1912, Taylor collected a number of his articles into a book-length manuscript which he submitted to the ASME for publication. The ASME formed an ad hoc committee to review the text. The committee included Taylor allies such as James Mapes Dodge and Henry R. Towne. The committee delegated the report to the editor of the American Machinist, Leon P. Alford. Alford was a critic of the Taylor system and the report was negative. The committee modified the report slightly, but accepted Alford's recommendation not to publish Taylor's book. Taylor angrily withdrew the book and published Principles without ASME approval.[13] Taylor authored 42 patents.[14] In France, Le Chatelier translated Taylor's work and introduced scientific management throughout government owned plants during World War I. This influenced the French theorist Henri Fayol, whose 1916 Administration Industrielle et Générale emphasized organizational structure in management. In the classic General and Industrial Management Fayol wrote that "Taylor's approach differs from the one we have outlined in that he examines the firm from the "bottom up." he starts with the most elemental units of activity – the workers' actions – then studies the effects of their actions on productivity, devises new methods for making them more efficient, and applies what he learns at lower levels to the hierarchy..."[15] He suggests that Taylor has staff analysts and advisors working with individuals at lower levels of the organization to identify the ways to improve efficiency. According to Fayol, the approach results in a "negation of the principle of unity of command."[16] Fayol criticized Taylor's functional management in this way: In Shop Management, Taylor said[17] « ... the most marked outward characteristics of functional management lies in the fact that each workman, instead of coming in direct contact with the management at one point only, ... receives his daily orders and help from eight different bosses... these eight were (1) route clerks, (2) instruction card men, (3) cost and time clerks, (4) gang bosses, (5) speed bosses, (6) inspectors, (7) repair bosses, and the (8) shop disciplinarian. »[17] This, Fayol said, was an unworkable situation, and that Taylor must have somehow reconciled the dichotomy in some way not described in Taylor's works. In Switzerland, the American Edward Albert Filene established the International Management Institute to spread information about management techniques. In the USSR, Lenin was very impressed by Taylorism, which he and Stalin sought to incorporate into Soviet manufacturing. Taylorism and the mass production methods of Henry Ford thus became highly influential during the early years of the Soviet Union. Nevertheless "[...] Frederick Taylor's methods have never really taken root in the Soviet Union.".[18] The voluntaristic approach of the Stakhanovite movement in the 1930s of setting individual records was diametrically opposed to Taylor's systematic approach and proved to be counter-productive.[19] The stop-and-go of the production process - workers having nothing to do at the beginning of a month and 'storming' during illegal extra shifts at the end of the month - which prevailed even in the 1980s had nothing to do with the successfully taylorized plants e.g. of Toyota which are characterized by continuous production processes (heijunka) which are continuously improved (kaizen).[20]
add to favoritesadd

What readers are saying

What do you think? Write your own comment on this book!

write a comment

What readers are saying

What do you think? Write your own comment on this author!

write a comment

What readers are saying

What do you think? Write your own comment on this author!

write a comment

What do you think? Write your own comment on this author

Info about the author

Name:

Taylor Frederick Win...

Born:

Influences:

none

Avg raiting:

4.67/5 (3)

Books:

2 books | 0 series

What readers are saying

What do you think? Write your own comment on this author!

write a comment

Do you want to read a book that interests you? It’s EASY!

Create an account and send a request for reading to other users on the Webpage of the book!